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Improvements in skill of summer forecasted precipitation as produced by the
North American multi-model ensemble (NMME) system over the contiguous
United States (CONUS) are examined by applying a new bias correction method.
The uncorrected precipitation produced by NMME hindcasts exhibits good predic-
tion skill in fall and winter, while the spring and summer forecasts are marked
with extremely poor skill. We propose a new method to correct the forecasted pre-
cipitation distribution based on skillfully predicted 2-m air temperature (T2m)
forecasts to fully exploit the stronger co-variability that exists between precipita-
tion and T2m in nature. The occurrence of enhanced recycled precipitation over
CONUS provides an ideal situation to hone precipitation forecast skills using the
T2m forecasts. The proposed bias correction is shown to successfully reduce the
root mean square error in precipitation hindcasts in summer and can easily be
extended to real-time forecasts, thus providing a framework to dynamically link
precipitation with other predictors besides T2m. Process understanding of the
observed T2m-precipitation relation will offer a framework for diagnosing poor
model skill.

KEYWORDS

bias correction to improve precipitation skill in NMME seasonal precipitation
forecasts, drought skill improvement over CONUS, surface air temperature–
precipitation relationship in seasonal forecasts

1 | INTRODUCTION

The current advances in dynamical modeling and data-
assimilation techniques make it possible to produce
multi-model coupled general circulation model (CGCM)
seasonal forecasts, which are an excellent resource to
explore the representation of regional precipitation trends.
The North American multi-model ensemble (NMME) pro-
ject is an effort to produce seasonal forecasts by several
state-of-the-art CGCMs from the United States and
Canada to provide precipitation, 2-m air-temperature

(T2m), and sea-surface temperature forecasts (Kirtman
et al., 2014). The skill exhibited by multi-model mean
forecasts is consistently higher than any participating
CGCM forecast underscoring the importance of multi-
model forecasts (Becker et al., 2014; Kirtman et al.,
2014). The improved performance of the multi-model
ensemble system is a consequence of the conglomeration
of physics and numerics across the CGCMs that better
span the complex spectrum of the solution space (Fritsch
et al., 2000); Doblas-Reyes et al., 2005). Note that this
success is predicated on two factors: (a) each of the
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participating CGCMs produces skillful forecasts and (b) a
single best performing model under all circumstances and
lead times cannot be readily identified.

While the NMME produced precipitation forecasts are
not skillful beyond a month over land, the T2m forecasts
exhibit higher skill levels beyond a season (Krakauer,
2017). Over the contiguous United States (CONUS), the
NMME participating CCGMs' precipitation skill varies
widely across regions and in general the skill rapidly
decreases beyond a month (Slater et al., 2016). However, as
drought conditions refer to onset of precipitation deficit
accumulated over a season and beyond, skillful seasonal
accumulated precipitation forecasts are crucial for adapta-
tion and mitigation purposes. Indeed our analysis shows that
the 3-month accumulated precipitation forecasts show
higher skill beyond 3-month lead times in fall and winter
seasons although the precipitation forecasts targeting the
summer season show a very poor skill beyond a month
(Figure 1). The focus here is to improve the precipitation
skill in summer season forecasts by performing a
statistical correction that can be seamlessly extended to real-
time forecasts. Ultimately we would prefer to understand
the processes and improve the models but an interim statisti-
cal bias correction is valuable nonetheless.

The skill of precipitation forecasts over the CONUS have
been shown to improve by using sea surface temperature
(SST) indices related to Pacific decadal oscillation, El Niño-
Southern Oscillation (ENSO), and Atlantic multidecadal oscil-
lation in earlier studies with some success (Madadgar
et al., 2016; Zimmerman et al., 2016). However, in our study

we exploit the correlation between concurrent T2m and precip-
itation in summer season over CONUS to effectively improve
the precipitation skill. This approach to exploiting the correla-
tion results in the dynamical consistency and skill improve-
ment at much smaller spatial scales compared to relying on
remote ocean-atmosphere teleconnections, which generally
improve the forecasts over larger spatial scales.

2 | DATA AND METHODS

The observed precipitation data for 1982–2010 used in this
study is obtained from Climate Prediction Center (CPC)
unified gauge-based optimally interpolated objective analy-
sis, which includes over 30,000 land-based stations from all
over the world (Xie et al., 2007; Chen et al., 2008). The
CONUS has higher gauge density compared to other station
networks, and is comprised of more than 15,000 stations
(Higgins et al., 2000). The original data available at 0.25�

spatial resolution is interpolated to a 1� resolution to be
coherent with the NMME forecast resolution. The observed
T2m data for the same time period is obtained from the
Global Historical Climatology Network (Fan and van den
Dool, 2008), which is also interpolated to a 1� resolution
from the original 0.5� spatial resolution.

This study uses the seasonal forecast data of nine lead
months produced by initializing at around the beginning of
each month for 1982–2010 period using eight of the
NMME participating CGCMs1 originating from Canadian
and US national modeling centers and universities. The
number of ensemble forecasts produced by the NMME
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FIGURE 1 Average of gridded
precipitation anomaly correlations over
CONUS for the 3-month aggregated
precipitation of ensemble mean forecasts
over 1982–2010 as produced by
(a) CFSv2, (b) CMC1, (c) CMC2,
(d) GFDL, (e) GFDL_FLOR, (f ) NASA,
(g) NCAR_CCSM4, (h) NCAR_CESM,
and (i) the multi-model mean. In each
subplot, the vertical axis shows the lead
month and horizontal axis shows the target
forecasts for 3-month aggregated
precipitation. For example, “6” on the
vertical axis corresponding to “JFM” on the
horizontal axis refers to the anomaly
correlation as calculated when the model is
initialized 6 months before January, that is,
in July in the previous year. In all the
subplots, 10% significant values based on
two-tail Student’s t-distribution are shown
with solid contours and 20% significant
values are shown with dashed contours
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models varies widely, ranging from 10 to 28, and a total of
109 ensembles are used for the analysis. NMME models
report monthly global SST, precipitation, T2m, 200 hpa
geopotential heights and soil moisture as part of phase I
(Kirtman et al., 2014) and this study uses precipitation and
T2m forecasts over CONUS.

The main motivation for precipitation bias correction
stems from two key observations: (a) the T2m forecasts pos-
sess significant correlation skill in JJA season, while the
precipitation forecasts exhibit very poor skill beyond one
lead month and (b) T2m and precipitation are significantly
correlated in observations over much of CONUS in JJA.
The bias correction in precipitation has been performed by
quantile mapping between observed and forecasted T2m
and subsequently correcting the forecast precipitation distri-
bution based on the observed T2m-precipitation relation-
ship. The bias correction is performed in two steps: (a) at
every grid point, the observed precipitation in summer is
ranked based on the T2m percentiles; (b) the forecasted pre-
cipitation is replaced with the observed precipitation associ-
ated with observed T2m quantile, which exactly
corresponds to that of forecasted T2m. This can simply be
expressed as:

8Ty,m,F 2 NMME½ � : T%
y,m,F9T%

y,m,O !Py,m,O≕ Pmodified
y,m,F

n o

ð1Þ
where T and P represent the T2m and the precipitation, the
subscripts y, m, F, and O represent year, month, forecast,
and observation, respectively; % represents percentile value,
and “modified” refers to the bias-corrected precipitation.
The key feature of the proposed bias correction is to repli-
cate the observed distribution mapping found between T2m
and precipitation in NMME mean forecasts.

3 | RESULTS

Though the precipitation forecast for any individual month
is not skillfully forecasted beyond 2 months, the 3-month
aggregated precipitation is more skillfully predicted much
beyond 6 lead months for fall and winter forecasts
(Figure 1). While the precipitation forecasts for individual
months in spring exhibit no skill, the 3-month aggregated
precipitation forecasts that include the spring month show
significant skill. Another encouraging part of this evaluation
is that the multi-model mean exhibits a higher skill com-
pared to any individual model (Figure 1i); the aggregated
precipitation in winter season is predictable up to 6 lead
months, which is as far back as the models are initialized in
the summer season. The root mean square error (RMSE) is
consistently smaller over a larger part of the CONUS for
the multi-model ensemble mean than any individual model
forecasts (not shown). The striking feature of Figure 1 is
that the 3-month aggregated forecasts involving May to

September forecasted months have virtually no skill over
much of CONUS, which would obviously impact the skill
in capturing the severity and extension of drought events
extending into the summer.

To understand the spatial distribution of NMME ensem-
ble mean forecasted precipitation skill in summer, the JJA
forecasts produced by initializing at different months are
analyzed. The skill of JJA-aggregated precipitation forecast
is mostly confined to parts of northwestern CONUS
(Figure 2). The JJA forecasts initialized in the winter
months (December–March) show some skill over central
United States and Texas mainly attributable to the ENSO
impact (Becker et al., 2014). In the June-initialized forecasts
the skill extends over to the Ohio Valley and Southeast
regions. The prediction skill does not exist in the JJA pre-
cipitation forecasts over much of the swath extending from
south-southeast to the northeast regions when the models
are initialized earlier than June.

The 3-month aggregated T2m forecasts on the other hand
show a much higher skill in the spring and summer seasons
beyond 3 lead months for every participating model except
the GFDL_FLOR model, which shows weak yet significant
correlations (Figure 3). The multi-model ensemble shows
much higher correlations for the summer season compared to
individual models. It is interesting to note that T2m summer
forecasts exhibit statistically significant skill even beyond
6 lead months while the summer precipitation forecasts show
virtually no skill (compare Figures 1i and 3i).

Over the CONUS, the correlations between the 3-month
aggregated observed T2m and precipitation show a rich var-
iability and smooth transition from positive to negative
across seasons (Figure 4). In the eastern half, they are posi-
tively correlated over the Ohio Valley and Appalachians in
late fall and winter seasons with positive correlations
extending to the northern tip of the northeast. Positive corre-
lations are also seen to the west of the northern Rockies and
plains covering much of northwest CONUS and northern
California in the winter. At the beginning of spring, positive
correlations turn to negative between T2m and precipitation
as the increased solar irradiance leads to dry conditions over
much of the CONUS (Zhao and Khalil, 1993); Trenberth
and Shea, 2005) and this negative relationship strengthens
through the middle of fall (Figure 4i) with a peak in sum-
mer, where the negative correlations prevail all over the
CONUS except in the southwest and upper Midwest regions
(Figure 4f ). In particular, the negative co-variability
between precipitation and T2m is strongest over the middle
of CONUS covering Northern Rockies and Plains down to
the upper part of the southern region. Stronger negative cor-
relations over the CONUS in summer combined with the
significantly higher T2m forecast skills are the basis of the
precipitation bias correction proposed in this novel
approach.
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The difference in the RMSE between the uncorrected
and bias-corrected JJA forecasts produced by initializing the
NMME models from earlier forecast months from

December shows that the RMSE is reduced significantly by
the bias correction (Figure 5). The reduction in RMSE
widely varies across the CONUS with particularly larger
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FIGURE 2 Gridded precipitation anomaly
correlation as produced by the multi-model
ensemble mean over CONUS for JJA
forecasts produced by initializing the
individual models from December of the
previous year to June, which is the
beginning of the summer season. Subplot
(a) shows the skill for December initialized
JJA aggregated precipitation while subplot
(g) shows for the June initialized forecasts
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FIGURE 3 Same as Figure 1, but for
T2m forecasts. In all the subplots, 10%
significant values based on two-tail
Student’s t-distribution is shown with solid
contours

4 of 8 NARAPUSETTY ET AL.



drops in the Northern Rockies and Plains, Northwest and
Southeast regions and a smaller drop in the Northeast
region. The relative percentage differences between the
uncorrected and the corrected forecasts amount to 80% (not

shown). The differences gradually reduce when the JJA
forecast is initialized close to June.

In general, the regions of reduction of RMSEs in the
corrected forecasts closely align with the areas of higher
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FIGURE 5 Differences in precipitation
root mean square error (mm/day) between
the uncorrected and bias-corrected
forecasts for the target forecast season JJA
as produced by initializing the NMME
participating models with from December
to June months as depicted in subplots
(a)–(g), respectively. Significant mean
square error difference between the
uncorrected and corrected forecasts at 5%
significant level based on t-test is
indicated by stippling

NARAPUSETTY ET AL. 5 of 8



negative correlations between precipitation and T2m
(Figure 4). The larger spatial extent of RMSE reduction in
the Great Plains suggests that precipitation not produced by
the models, likely due to the poor representation of
enhanced land–atmosphere interactions in summer, is much
better captured by the correction scheme. The hotspots of
enhanced land-atmosphere interactions over central CONUS
are extensively discussed by Koster et al. (2004), and the
proposed methodology corrects the model precipitation
biases in those regions for all the initialized forecasts. The
bias correction scheme strongly reduces the RMSEs, espe-
cially in the earlier initializations (e.g., December- to April-
initialized forecasts compared to May- and June-initialized
forecasts), and this provides a base for enhancing the
drought prediction skill in the long-lead forecasts extending
into summer.

We also note that there are areas that are negatively
impacted by the bias correction; for example, over Texas,
the bias correction results in slightly higher RMSEs for
December- to March-initialized forecasts (Figure 5). How-
ever, the RMSE increase in this and other regions (e.g., the
Ohio Valley) are relatively small compared to the RSME
reductions over the rest of the CONUS and statistically
insignificant.

4 | DISCUSSIONS AND CONCLUSIONS

This study proposes a bias correction for boreal summer
precipitation hindcasts produced by NMME over CONUS.
Bias correction is applied on the hindcasts of aggregated
JJA, which are produced by initializing the NMME system
in December to June of 1982–2010, and the proposed bias
correction methodology is easily extendable to real-time
forecasts as the RMSE improvements in the corrected fore-
casts only differ by 3% when the method is applied in sim-
ple and cross validated modes.

The main motivation for this bias correction stems from
two key observations: (a) the seasonal precipitation fore-
casts produced by the NMME system have very poor skill
in JJA but the T2m forecasts display a significant correla-
tion skill, and (b) T2m and precipitation are significantly
correlated in nature over much of the CONUS in JJA. To
this end, the central idea of the precipitation bias correction
is to hone the skill of precipitation forecasts by replicating
the observed T2m–precipitation distribution co-variability in
the NMME forecasts. The bias correction can simply be
implemented a posteriori in the forecasts by first quantile
mapping between observed and forecasted T2m and subse-
quently correcting the forecasted precipitation distribution
based on the observed T2m–precipitation relationship.

The advantages of bias correction based on quantile
mapping are well known over simple mean correction.
Though bias correction based on adjusting the mean bias is
effective in reducing systematic mean bias for continuous

variables, such as SST (Narapusetty et al., 2014), it does
not correct the other statistical moments that impose limita-
tions on reducing biases effectively for stochastic variables,
such as precipitation. This bias correction is in principle
very similar to the statistical bias correction based on bias
correction and spatial disaggregation method (BCSD; Wood
et al., 2004; Maurer et al., 2014) except for a key differ-
ence. Unlike the BCSD, the bias correction method pro-
posed here does not directly quantile map the forecasted
precipitations to observations. As the precipitation forecasts
in JJA possess an extremely low skill (Figure 1) over the
CONUS, a direct mapping of the forecasted precipitation
distribution will not generally lead to skill improvement.
We compared the RMSE improvements imparted using the
method proposed in this study with the BCSD-produced
correction (not shown) and found that both methods pro-
duce comparable results in the western half of the CONUS.
However, our method is more skillful in the eastern half of
the CONUS where the precipitation forecast skill is low
because this region is controlled by an enhanced precipita-
tion recycling in summer (Anderson et al., 2009) and thus
the T2m-based correction yields more realistic precipitation.
Note that this study shows the RMSE reduction by employ-
ing the correction method. We found that the improvement
in the skill of corrected precipitation based on anomaly cor-
relation is marginal. In principle, the anomaly correlation
between observed and corrected precipitation is expected to
improve. However, as the bias correction relies on the exis-
tence of T2m-precipitation co-variability in observations
and the NMME forecasts also replicate the T2m-
precipitation co-variability (not shown), the resulting T2m-
based precipitation correction does not yield further
improvements in anomaly correlation. However, we note
that if this correction is applied over a geographical region
where the NMME forecasts would not produce expected co-
variability between T2m and precipitation, this scheme
could improve the anomaly correlations as well besides the
magnitude as found over CONUS. Such an application is
beyond the scope of this manuscript and the analysis is
underway and the results of that study will be published
elsewhere.

The efficacy of the bias correction method illustrated in
our study is not based on the assumption that T2m drives
the precipitation. The objective of the study is not to find
the drivers of the precipitation; rather we want to maximize
precipitation forecast skills based on the variables which are
skillfully produced by CGCM forecasts. The bias correction
proposed in this study relies on the skillfully forecasted
T2m as predictor and corrects the precipitation distribution
based on the strong T2m-precipitation co-variabilities that
exist in nature. Note that the trend of T2m in nature has
very minimal effect, if any, on the trend of corrected sea-
sonal precipitation forecast since we are only correcting pre-
cipitation for one season at a time.
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This method also suggests that a framework to hone the
precipitation forecast skill is possible based on the precipita-
tion co-variability with any other dynamical field besides
T2m provided that the dynamical field is skillfully fore-
casted by NMME. For example, the more tropical nature of
the precipitation over the CONUS regions such as the
Southeast CONUS may yield a vertical velocity or outgoing
longwave radiation-based bias correction, while additional
soil-moisture-based skill enhancement maybe possible over
the CONUS regions where recycled precipitation is signifi-
cant. In this study, the bias correction is performed on the
ensemble-mean forecasts; therefore this analysis cannot be
used to diagnose the improvements in ensemble forecasts
by employing statistics such as reliability and ranked histo-
grams. This study also does not distinguish the contribu-
tions of precipitation skill improvements from ENSO and
ENSO-neutral years individually. Such an in-depth analysis
is underway and will be reported elsewhere in the future. It
is clear however that the model biases can be diagnosed in
the context of missing observed correlations of model pre-
cipitation with other appropriate model variables that are
captured more skillfully.
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